
1

Is there a role for Apps in the future of Safety Management?

R L Maguire CEng MIMechE MSaRS MBCS

RS2A Limited,Swindon, rlm@rs2a.com

Keywords: Mobile apps, Software, Safety.

Abstract

This paper seeks to describe mobile apps, their benefits and

problems when they come to be used in the safety domain.

This research compares and contrasts the development

processes for a typical safety domain tool, against the

development processes used for apps. It seeks to answer the

question whether future safety practitioners will all be using

hand-held, mobile devices with safety Apps on? The paper

concludes with a set of guidelines, developed from these

opening statements for prospective App developers and App

users, such that potential Apps of the future might actually be

useful and demonstrably safe to use in the future of safety

management.

1 Introduction

All tools used in the development of safety relevant functions

or services shall have sufficient safety assurance to ensure

that they do not jeopardise the safety integrity of the function

or service. Analysis shall define the safety assurance required

of each tool with respect to its use on the system. This is a

minor extension on the requirements for tool use in the UK

MoD retired standard for requirements for safety related

software in defence equipment [6]. But it could be from any

software or safety standard.

"Writing and delivering an App can be quite a daunting task

with many bases that need covering, including research,

design, development, marketing, technical support, and more"

– Rodney D. Cambridge (creator of 'Top-Ten' App 2008) [2].

So can the additional requirements of an App for the safety

domain be satisfied as well? What are the requirements in the

first place and is there a need or role for Apps in the future of

safety management?

2 What Exactly is an App

The word App is of course short for 'Application', and like

any computer programme, it is the app software that adds

functionality to a mobile device [7]. Apps themselves are not

that new. Google produced a successful suite of apps for

online services in 2002; these included webmail, calendars,

etc. However, the term has become somewhat hijacked by

Apple and has become synonymous with games, maps, past-

times and service ordering (e.g. taxi, pizza, flight times) that

run on the multitude of mobile devices that exist now.

An app is a smartphone or tablet computer application that

provides some functionality. As the shortened name implies,

apps typically have less functionality that the more 'grown' up

full applications that run on desktop or laptop personal

computers [2]. So a small office (small 'o') app might allow

you to create, view, edit and save MSWord documents, but it

might not allow you to use macros, templates and track

changes. It may not support all the fonts and languages that

are usually available, and it may not allow mail merging, clip

art or formatting for printing. The question to think about here

is, 'Well, do I need all that anyway?'

So, Apps are usually just small scale, reduced functionality

software programmes. There are a number of very good

reasons for this as follows;

Screen size and resolution: Smartphones and tablets have

much smaller screen size available than a full 21" high

resolution desktop screen. This can make it difficult to

appreciate and observe full graphic representations without

frequent re-scaling and screen movements. Any table wishing

to display multiple columns in high resolution could render

the font size prohibitively small.

Demand Profile: The usage profile of an app is based on the

app being something that is run and looked at for a very short

time. It doesn't stay on all day constructing a technical paper

for a safety conference (or did it?). They are launched for a

short term objective – check the weather, order a taxi, look up

a shop location. There are some exceptions – maps generally

stay on for the length of the journey and some games, at least

for older children and teenagers are designed to be played for

hours – at night – after they've been sent to bed.

System Profile: Many i-things have a limited package volume

in order to be more mobile. This reduces the space available

for RAM and memory capacity. Desk top computers may

have 8 or 16 GB of RAM, smart phones may only have 10%

of this. Memory capacity is being satisfied by the use of

cloud-based storage – although there are security and

availability aspects to consider in these areas. Operating

speeds on mobile devices are largely comparable with PC

system at typically at or above 1GHz; so they can do very fast

things – as long as they use a low amount of memory.

Development Profile: The development profiles are discussed

in more detail in the next section of this paper. Essentially,

2

the app market is very dynamic and this week's fashionable

app game, app service or app function, becomes next week's

history. So the development profile for a commercial app has

to be fast in calendar time – typically from idea to app store in

less than six months. The amount of (quality) code

development that can take place in this time is small. A

bespoke App for a dedicated single or low number of safety

functions does appear to be a viable development model, if

the key aspect to the App is that it is mobile. Otherwise a full

PC-based application would provide equal functionality.

Market Appetite: The market place drives app cost. There has

been a noticeable 'race to the bottom' [2] for sell price of a

commercial app. Many apps are totally free to download and

use, usually through sponsorship or as part of a marketing or

demonstration campaign. Most game apps retail for £1 or

less. I downloaded 'Smart Office 2' for less than £10. This app

allows for the opening, creation and wireless printing of many

MS standards and pdf format. The likely number of sales and

unit costs does reflect on the size and functionality of the app

that is offered. But, if you only want an app to do just a few

things anyway, the cost benefit analysis is easy.

One area that could influence the future development and

price of Mobile-Apps is the strong open-source software

communities within several safety relevant domains. For

example "auvation" produce a freely available fault-tree

analysis package 'OpenFTA'. This open source product has

now been further developed by the producers into

'FormalFTA', as a commercial product, where its distribution

is now being considered.

3 Apps in the Safety Domains

There are already a number of apps on the market that are

safety relevant. Of course, if you don't have a mobile smart

device or i-thing, you will not be exposed to their existence.

There are several review publications for mobile apps, usually

dedicated to particular equipment e.g. ipad or Android or

Windows-touch etc. These publications typically review and

list 400 or 500 current apps across a wide range of domains,

for example, Gaming, Music Streaming, TV & Film,

Immersive stories, Reference Libraries, Outdoor mapping and

routing, Email, Task Management, Shopping, Document

Management [8] and some/few bespoke industry apps. It is

this final category that includes the safety relevant ones. As

you might expect, they are not terribly popular so generally

never make into the top 10 of anything.

Table 1: Selection of safety relevant apps

In spite of their lack of popularity this paper presents a series

of apps that are available now or shortly, that may be argued

to have a relevance to safety. The discussion on each app

shows how the author sees them as being safety relevant with

regard to its functional use.

The Apps shown in Table 1 indicate that there is a safety

relevance to many apps that are already in existence. It is by

no means certain that there has been any risk assessment or

evidence produced on the code development process or the

testing regime. But does this mean that they are not fit for

purpose? Or that they should be prohibited from use? Aspects

of the app software development methodology discussed later

in this paper will help to resolve these issues.

4 Review of Software Development

Methodologies

In order to make any claim for safety integrity in any

software, app or otherwise, it is necessary to identify a

framework by which to judge that integrity. In full software

applications this framework is provided by following

recognised good practice based on a published, standard

approach throughout the software development lifecycle.

The last half-century has seen a dizzying progression of

technical advancement in the areas of computer, software, and

communications technology. With each advance came rapid

changes in the way society works and lives. The impact of

technology is increasingly pervasive. Even as the current

economic downturn limits capital investment, innovators and

App name

and price

Safety relevant functions of the app

NHS ANT

(free)

Provides updated guidelines to medical

professionals on the dose and prescription

guidance for the use of antibiotics to treat a

range of 50 infections e.g. meningitis,

pneumonia, clostridium difficile and

MRSA.

Europe

Warn

(free)

Pushes warnings of severe weather in user

selected regions of Europe. For use in real

time vigilance warnings published by

national meteorological service

participants

HazMan3

($2.00)

Allow the user to input floor plans of

safety inspection areas and record hazard

points using a standard set of markers.

This can then form a report for

demonstrating duty of care; producing a

safety baseline; or constructing an accident

report list.

HaZaP

(£100.00)

Allows users to construct linked accident

sequences including multiple intermediate

events. Presents configuration controlled

hazard and accident logs along with

graphical, spread-sheet and pdf outputs

3

entrepreneurs are pushing the limits in the areas of

biotechnology and nanotechnology [1].

Several development methodologies have been published and

used over time, but there is now a new approach that has

become more popular in order to suit the market place for

apps. These are discussed below, the author offers an apology

if a particular favourite development methodology is not

presented; the production of a complete list is not the intent of

this part of the paper.

Code and Fix Model

This was the first basic methodology in the earliest days of

software development, and it contained two basic steps – i)

Write some code and ii) fix the problems. However, after

even just a small number of fixes the code became so poorly

constructed that future maintenance and modifications were

prohibitively expensive [ibid.]

The Waterfall model was highly influential in the 1970s.

Originally developed from the Stagewise Model of the 1960s,

it provided for recognition of feedback loops between stages

and allowed for an initial incorporation of prototyping in the

software lifecycle via a build stage running on parallel with

requirements analysis and design [ibid.]

The transform model assumes the existence of a capability to

automatically 'transform' a formal specification of a software

product into a programme satisfying the specification. This

methodology by-passed the difficulty of having to modify

code, since the modifications were made to the specification.

This model does share some of the difficulties of earlier

models, such as the assumption that the user's operational

system will be flexible enough to support unplanned

evolution paths. Additionally (as predicted in 1988) this

model faces a formidable knowledge-based maintenance

problem in dealing with the rapidly increasing and evolving

supply of COTS software products (although the acronym

COTS hadn't been coined at that time – the phrase at the time

was "reusable software components and commercial software

products"). [ibid.]

The spiral model evolved from experience with incremental

refinements of the waterfall model as applied to large

government software projects. The model reflects the

underlying concept that each cycle involves a progression that

addresses the same sequence of steps, for each portion of the

product and for each of its levels of elaboration. The three

primary areas of concern with this model involve matching

the software to contract need, relying on risk-assessment

expertise, and the need for further elaboration of spiral model

steps [ibid.]

In spite of these models being available, many projects failed

attempting to use the same techniques. Some projects got lost

in the documents and never implemented any code, missing

the window of opportunity for the software. Others did not

leave enough time at the end for implementation and testing

and delivered systems inconsistent with the documents and

designs on which most of the project time was spent [5].

At the same time, numerous projects were very successful

that did not follow methods with binders of documents,

detailed designs, and project plans. Many experienced

programmers were having great success without all these

extra steps. The determining factor of project success seemed

more and more to be the people on the project, not the

technology or the methods that were being used [ibid].

This gave birth to a disciplined, yet lighter approach to

software development, known as Agile Methodologies.

Extreme Programming (XP) is the most widely used agile

methodology. To many, XP is a set of 12 inter-dependent

software development practices. Used together, these

practices have had much success, initially with small teams,

working on projects with high degrees of change. XP teams

use a simple form of planning and tracking to decide what to

do next and to predict when any desired feature set will be

delivered. Focused on business value, the team produces the

software in a series of small, fully integrated releases that

pass all the tests that the Customer has defined.

A series of rules for Extreme Programming have been

published via the extremeprogramming.org web community

[9] covering the areas of Planning, Managing, Designing,

Coding and Testing. The basis for the rules is somewhat

flexible as they contain directions to 'Give the team a

dedicated open work space' and that 'A stand-up meeting

starts each day'; as well as more familiar types of coding rules

about iteration planning and unit testing.

5 XP Development Values

The XP Values are Communication, Simplicity, Feedback,

and Courage. The essence [of XP] truly is simple. Be together

with your customer and fellow programmers, and talk to each

other. Use simple design and programming practices, and

simple methods of planning, tracking, and reporting. Test

your program and your practices, using feedback to steer the

project. Working together this way gives the team courage.

These values guide actions on the project. The practices

leverage these values to remove complexity from the process

[5].

This is how many apps are now produced. An XP project

proceeds in iterations of typically a few weeks in length. Each

iteration delivers fully developed and tested software that

meets the most valuable small set of the full project’s

requirements. An app developed to this approach proceeds in

a steady rhythm of delivering incrementally more

functionality. The Customer determines at what point in time

the app can be released and deployed.

The pace of change in the software development industry

remains at high. People continue to push the boundaries of

known techniques and practices in an effort to develop

software as efficiently and effectively as possible. Extreme

4

Programming and Agile Software Methodologies have

emerged as an alternative to comprehensive methods

designed primarily for very large projects. Teams using XP

are delivering software often and with very low defect rates

[ibid.]

6 Benefits of developing apps

It is the author's belief that using these agile software

development methodologies for small scale apps holds the

potential for great improvements in safety relevant software.

Many of the software tool concepts that we see around us in

the safety industry could be implemented via small scale

smart apps. The model I put forward now is one of a small

core app carrying out, say, Event-tree Analysis or producing a

Goal Structure Notation; coupled with a number of plug-in

apps for additional functionality. This kind of model probably

already exists but hasn't been explicitly identified or found

yet.

The chief benefit of a Mobile-App is that it is mobile – you

can use it where you can't take a desktop PC or where a full

size laptop would present handling difficulties. The Hazman3

App from table 1 allows geo-location specific hazards to be

recorded and tagged to locations as part of a mobile working

party around a work site. The weather warning related Apps

can be taken via a mobile device on a remote mission –

providing signal coverage is sufficient. Whilst some laptops

are available in 'ruggedized' versions, sometimes the

operating environment is more rugged.

The benefits could be extraordinary. An app may be small

enough in functional code size so that is may be tested

exhaustively. Incremental functions available from open

source areas can, and I stress can, become high integrity

through their prior use, testability and through ownership of

the code.

Bespoke apps can also be developed, indeed have been

developed and are now being developed. They may not be

commercially available from the i-store or from Amazon just

yet, but they are multiplying in our domain. The benefits to

users come from the closeness to the code developers, so that

modifications and functionality can be developed, tested and

in service within a few weeks. And, if that app doesn't do

exactly what you want, you really can get it changed or

commission / develop your own bespoke app. The NHSANT

App from Table 1 can be updated very quickly when clinical

advice changes, because there is a short and direct feedback

route to the developer's from the Users, something that

doesn't necessarily exist in full applications.

Although this section does say benefits, there is the darker

side to apps that needs to be considered, and there are several

bear-traps to avoid. These are taken from an Information

Week Analytics survey of over 300 business technology

professionals in May 2011 [3]. It gives the percentage of

responders citing a top concern over the growing use of

devices, apps and operating systems.

Security risks: 62%

Variety of devices and operating systems: 53%

Lack of user support by developers: 43%

Lack of centralized platform for managing devices: 39%

Cost of through life maintenance: 23%

Cost of management effort: 21%

Loss of control over processes: 20%

I imagine there was a similar survey on the role of business

computers in the 1970s, but I haven't been able to find it yet!

Interestingly, none of the concerns mentioned were relating to

low confidence in functionality or poor performance. These

points, and the listed concerns, do need to be mitigated if the

benefits of apps are to be realised in the safety industry – that

is, if we want to have the benefits.

7 Good Practice for the Development of Safety

Relevant Apps

In light of the concerns noted in industry, personal experience

with software projects and as cited above the author has

proposed a set of good practice requirements for the

development and use of Mobil-Apps in the safety industry. Of

course, an existing software standard may be followed to the

proscriptive or goal based direction of that standard e.g.

IEC61508 [4] or the recently published (and very recently

FAA approved) DO178C [9], including all the cohort

documents. Due to the development timelines of these

standards, they have not been developed with Agile

development methods acknowledged, so it will remain

difficult for an agile-developed App to satisfy those standards

in entirety. However, the reduced development, use and

functional profile of Apps should equally allow for a

proportionally reduced development requirement. Proposals

for good practice for the development of safety-relevant Apps

are as follows.

1. The App development shall follow any published,

pre-defined development methodology.

2. The development methodology shall be made

available for User or Auditor review.

3. The development process shall allow for the creation

of an associated data pack.

4. The associated data pack shall be made available for

User and Auditor review.

5. The associated data pack shall contain a description

of all the functions that the app is required to do.

6. The associated data pack shall explain how the

functions of the app have been implemented.

7. The associated data pack shall contain a description

and the results of the testing done to demonstrate the

functional performance of the app.

8. The associated data pack shall contain a history of

the development process used for the app.

9. The associated data pack shall contain a record of

the competence of the designer and developer.

5

10. The app shall come with a recommendation on its

integrity, limits and fitness for purpose based on a

risk assessment.

It is the last point that makes a cultural change in the use of

software apps as opposed to full software applications. This

would be akin to the use of a Certificate of Design, but

perhaps would be named as a Certificate of Risk. Much like

any equipment or service, once a risk assessment has been

made, the safety case makes a recommendation for use or for

the next development stage or for test flying or for limited

release etc. It is up to the person holding the duty of care over

the end users to accept that recommendation or not.

The Certificate of Risk shall contain the version description;

the summary of the associated data pack items listed above; a

summary of- and references to the risk assessment; and a

statement of residual risk

One additional proposal for the associated data pack that

would accompany Apps (but may also be equally applicable

to full applications), is that the data pack should (and 'should'

is chosen deliberately) not have more lines of information

than there are lines of code in the App. This would force

developers to be succinct in their evidence presentation,

rather than bulking up evidence so that it 'looks' good.

Responses on this point would be welcome from the

community.

8. Is there a role for Apps in the future of Safety

Management?

This paper has shown that there are identified benefits from

the use of Mobile-Apps including their obvious mobility, but

also their ability to be designed for targeted safety functions

using rapid, agile development techniques. However, these

benefits are not unique to the domain of safety management.

Open-source development approaches for the wider benefit of

society may reduce the need to spend resources on App

development – someone may already provide a suitable free

version.

There are multiple concerns within the business domain in

general concerning Mobil-App use and the associated

infrastructure. However, these can be seen as concerns

relating to generic Information Technology applications

rather than being specific to just Apps themselves.

Ownership and developer feedback distance can be exploited

to create bespoke Mobile-Apps that can be developed to meet

specific needs, perhaps within programme management or

wider-system progress cycles.

The requirement for a data pack of evidence concerning

process and testing proofs can be significant within the safety

critical domain. This may be commercially prohibitive in

terms of finance and resource requirement. Within a safety-

relevant domain, the data evidence obligation may be able to

be reduced in proportion to the risk (pending contractual

agreements).

In summary, this paper shows that there is a role for Apps in

the safety management domain. However, that role is

currently based on a relatively complex relationship between

mobility, function (role), safety relevance and an agreement

over the amount of evidence that the end User might require.

For high-integrity, single-function Apps it may become

possible to exhaustively test the software. For multi-function

high integrity Apps, the evidence requirements may just as

well justify a full application to be developed. For lower

integrity single or multi-function Apps, the agile and lower-

cost App development process may indeed provide a niche

opening for their capability.

This potentially inverse relationship between integrity and

functionality can be represented in equation (1) below, where

F is 'App functionality' and I is 'App integrity';

(1) F ∝ 1/I

In this way a Mobile-App is likely to be able to do one

function at high integrity or several functions at lower

integrity.

The author believes that on balance, there is enough evidence

to show that there is a role for some Apps in the future of

safety management, but there will be limited opportunity at

the higher end of the integrity spectrum.

References

[1] Boehm, B. W. "A Spiral Model of Software

Development and Enhancement", TWR Defense

Systems Group, Redondo Bech, California, USA, 0018-

9162/88/0500-0061$01.00, IEEE, 1998

[2] Cambridge, R,D. "How not to write an App – A reality

check for budding app developers", Amazon.co.uk Ltd,

Marston Gate, London, 2011.

[3] Finneran, M. "Mobile App Development Needs a New

Approach", Information Week Analytics, August 15,

2011.

[4] International Electrotechnical Commission (IEC) "

Functional safety of electrical/electronic/programmable

electronic safety-related systems", IEC-61508, Edition

2.0, 2010-04

[5] Lindstrom, L & Jeffries, R. "Extreme Programming and

Agile Software Development Methodologies", pg41-52,

Information Systems Management, Summer 2004

[6] Ministry of Defence. "Requirements for Safety Related

Software in Defence Equipment", Defence Standard

00:55 Issue 2, August 1997.

6

[7] Osbourne-Walker, S. "What is an App?", pg6-7, The

Stuff Guide to Apps 2013-2013, Haymarket Consumer

Media, November, 2012

[8] Parsons, J. "iPhone, iPad and Android Apps magazine",

Image Publishing, No. 34, June 2013

[9] RTCA/EUROCAE "Software Considerations in

Airborne Systems and Equipment Certification",

DO178C / Ed-12C, RTCA/EUROCAE, May 2012.

[10] Wells, D "The Rules of Extreme Programming", from

website www.extremeprogramming.org/rules.html

(retrieved 5th September 2013)

http://www.extremeprogramming.org/rules.html

