
Human Factors and Software Factors –
A Powerfully Reliable System

Richard Maguire B.Eng M.Sc C.Eng MIMechE
SE Validation Limited

Salisbury
United Kingdom

rlm@sevalidation.com

ABSTRACT

There is a great deal of apprehension in engineering circles when new safety systems are being
developed which need to have reliance on both humans and software. Many standards and
guidance papers in industry provide a great deal of advice on avoiding hazards, problems and
mis-haps. Little guidance is given on promoting the economic benefits and synergies of having
these two groups of sub-systems working together. Each sub-system has its own performance
niche and reliability properties, which can be exploited for the benefit of the whole system. This
exploitation will be developed by assessing sample requirements placed on a safety system, and
will give guidance on how the requirements may be distributed over the human sub-system and
the software sub-system.

A powerful safety and reliability argument will be constructed demonstrating how human factors
and software factors can be combined together, utilising the performance capabilities of each.
Several examples are given from across industry, with the safety and reliability arguments
demonstrated using logical operators. This is then interrogated to demonstrate the positive
economic nature of cost, time and quality properties. The results give key guidance on the limits
and power of the constructed safety and reliability arguments.

1. INTRODUCTION – A BRIEF HISTORY OF RELIABILITY DEVELOPMENT

Reliability as a technical concept appeared shortly after World War One as a discussion on the
reliability comparison of single, twin and four engine aircraft. During World War Two the
engineering of the ‘V’ series missiles led to the development of the product probability law of
series component by Robert Lusser [Høyland & Rausand 1994]. During the 50s and 60s the space
race was the focus for further reliability research and the 70s and 80s continued with nuclear
power and oil and gas engineering. The 90s have seen the fields of human factors and software
factors take their turns in the reliability stakes. The current generic definition for reliability given
in BS 4778 gives the position as;

Reliability: The ability of an item to perform a required function, under given environmental
and operational conditions and for a stated period of time.

The definition need not be uniquely specific to an individual item – i.e. a sub-system, or whole
system may also have properties of reliability.

As can be seen over the decades, reliability is at the core of every major industry in the world
today – that is why it is so vital to economic prosperity of the first world and the progressing
economic development of the third world.

2. THE PROBLEMS OF RELIANCE ON HUMANS AND SOFTWARE

The effectiveness of many human-with-software systems depends critically on how well the
needs, capabilities and limitations are taken into account during the design of systems and their
related operation and maintenance. Systems that appear to be effective under normal conditions
may exhibit significant shortcomings under abnormal or emergency use. Often, system failures
may be attributed to ‘human error’ or similar concepts, however it is infrequent that user error is
proven to be the sole cause of these problems [MoD 2004].

The consequence of system failure can be costly in terms of penalties, legislative censure or
financial and human losses – a life simply cannot be recovered in the next fiscal quarter. Many
system failures could have been prevented or the consequences reduced if greater time and
attention had been paid to human factors [MoD 2004] and software factors.

There are several areas where humans are better than computers and vice-versa, software gives
repeatable and fast function; humans are better at learning and anticipation. Task allocation needs
to be understood and implemented with great care. This is especially true for systems with multi-
year acquisition processes where the user and designer are unlikely to share the same temporal
space of a project lifecycle.

3. GENERIC DESCRIPTION OF HUMAN-SOFTWARE SYSTEM FAILURE
MECHANISM

In a system composed of human and software components it is perfectly fair to state that a failure
mechanism may be initiated by either. Software does not usually break or wear out, it fails by
design – i.e. software does exactly what it is ordered to do even if it is wrong. This is potentially
another form of human error, but at the coding stage of the project, very much earlier than
operator errors. Complex software will have multiple inter-relationships, so many that all of them
simply cannot be interrogated for reliable performance. There will always be areas of code that
remain unchecked. However, it should be noted that software errors do not cause accidents, it is
software failures that do that.

Software can also carry out vital performance, safety and reliability checks. Time-stamping
messages to allow delay checking; check-sums to allow corruption/quality checking and data
format barriers to allow syntax type and size checking. Many of these techniques are applied to
the poor old human operator, there is also the case that the software should perform the checks on
itself – providing common cause failures can be addressed.

The human-in-the-loop part of the system is unfortunately cited for the majority of unintentional
harm in our Armed Forces [Brain & Maguire 2005]. Slips, trips and lapses can all add up to a
pretty unreliable performance, especially when considered alone. It is the checks by other parts of
the system (other humans as well as software) that prevent all human frailties from propagating to
full-blown disasters.

However, it must also be stated that human vigilance is probably responsible for preventing far
more harm than all the equipment-based safety features combined [Brain & Maguire 2005].
Situational awareness and ‘over-hearing’ have been demonstrated to be very real safety and
reliability factors [Wright et al 1999].

The dual system reliability roles played by humans and software can be represented graphically
using influence diagrams such as Fault-trees. Using Fault-tree influence diagrams does give the
opportunity to investigate the relationship between the four components of system reliability
discussed above: human error, software error, human vigilance and software vigilance. Figures 1
and 2 show two possible relationships of the four factors, the main difference is in the logical

organisation of the operators in the diagram. Both figures show that failures can originate from
either the human components OR the software components of the system. Figure 1 shows that
the failure of capture mechanisms, vigilance and performance checks can, in a similar way,
originate from either the human OR software components. This is consistent with task allocation
practices where barriers to failure and unreliability may be shared between sub-systems of the
whole. Figure 2 shows a second arrangement of the failure of capture mechanisms, where the
failure propagates up the fault-tree when there is a failure in both the human components AND
the software components.

Not Quantified

Event 1

Human component
fails to perform

function

Not Quantified

Event 2

Software
component fails to
perform function

Gate 2

System component
fails to perform

function

Not Quantified

Event 3

Human component
capture

mechanisms fail

Not Quantified

Event 4

Software
component capture

mechanisms fail

Gate 3

System
components do

not capture failure

Gate 1

System fails to
perform required

function

Figure 1 : First arrangement of system component capture
mechanisms – ‘OR’ gate

4. CALCULATIONS AND ANALYSIS OF THE LOGICAL INFLUENCE

Applying an example numerical set to these fault-tree events indicates the effect of the OR/AND
gate swap. For the calculation comparison the error source values have been set to a nominal
0.01 per operation; the software barrier failure rate is set to 0.01; and the human barrier failure
rate is set to 0.1 per operation. For the example it is not important to specify what the ‘per
operation’ unit actually is - it could be a time based unit or an event based unit. As long as the
units are consistent the calculation will be satisfied.

The logical layout of figure 1, with the OR gate in the barrier failure branch, gives the
unreliability figure for the system of 0.0022 failures per operation. Figure two, with the AND
gate in position, gives an unreliability figure for the system of 0.000022 failures per operation.
This represents a two-order difference – very powerful.

It is fully accepted that not all systems can be represented this way. It may be said that these two
positions represent the limits of reliability for a human-software system expressed in its simplest
form. System designers should rightly be apprehensive of approaching the ‘OR’ position, and
should be positively targeting the ‘AND’ position. This is where the power of a combined
human-software system can be developed and exploited.

Not Quantified

Event 1

Human component
fails to perform

function

Not Quantified

Event 2

Software
component fails to
perform function

Gate 2

System component
fails to perform

function

Not Quantified

Event 3

Human component
capture

mechanisms fail

Not Quantified

Event 4

Software
component capture

mechanisms fail

Gate 3

System
components do

not capture failure

Gate 1

System fails to
perform required

function

Figure 2: Second arrangement of system component capture
mechanisms ‘AND’ gate

5. THE LIMITATIONS OF REAL SYSTEMS

As acknowledged above, the representations given in this paper do express the human-software
system in one of its simplest forms. The use of the strict logic gates represents intra-system
influence in its purest form – each event is mutually exclusive, as no common cause failures are
present.

In reality the events expressed at a generic system level will not be specified in enough detail to
guarantee no interference. In this example the sub-system components that have the software
label may well have several common areas from power source to algorithm content. Similarly,
the human components may well have shared frailties – in the ‘OR’ limit situation, they may even
be the same human being.

The obvious development strategy for a human-with-software based system is to ensure that the
whole system is biased towards the ‘AND’ condition, rather than the ‘OR’. The next section of
the paper will focus on strategies to promote this.

6. STRATEGIES TO PROMOTE POWERFUL RELIABILITY

The earlier definition of reliability contains two critical elements of reliability – the performance
of a function and a period of time factor. Thus reliability can be said to be related to variables of
a quality performance and a timely performance. It is not important (in this paper anyway) to
solve the relationship completely, it is more significant to acknowledge this way of expressing
reliability as a focus for strengthening overall reliability.

As contributors to reliability, humans and software have time and quality aspects, which when
understood can lead to methods of improving the effects of them. Both software and humans
have a finite speed of performance – with the latest technology software should easily be the
faster of the two with faster reaction times [HSC 1998]. They also both have quality factors, but
these are derived from different sources. Software has a consistent quality behaviour – it will
always do exactly as instructed, it doesn’t break or wear out. If the code instructions are incorrect
for the purpose, the performance will always be likewise. The human however, has a progressive
quality performance – the human can learn and respond through intellectual consideration,
however humans do break and certainly wear out.

The goal of task allocation is to design a system where the tasks of the human operator are
achievable and are appropriate to the operator’s role (and ability), and the development of the
software system is technically and economically feasible [Wright et al 1999]. In this paper there
is an additional goal of promoting the ‘AND’ position of the failure capture mechanisms. Here
each human and software operating component must give opportunity and authority for the other
to review the decisions being made.

Particular strategies for software systems employ features such as systemic processor and memory
self-checks, continuous testing, checksums and ‘watchdogs’, which contribute to the early
detection of potentially unreliable failures [HSC 1998]. The human operator is then cued to
review the system situation and to make a timely intervention, if appropriate.

7. CASE STUDIES IN HUMAN AND SOFTWARE CO-OPERATION

7.1 Medical Case Study

As detailed in a case study on automation, complexity and failure from the department of
emergency medicine at the University of Florida [Wears 2005], an incident occurred causing
great debate concerning system reliability. The incident was a patient needing emergency
medication from an automated dispensing unit which had a number of software controlled safety
interlocks. By coincidence on the day that the patient was rushed to the emergency room, the
software interlocks were being re-enabled after a software upgrade process. This caused a storm
of messages (one message for each medicine type) which slowed the system response to the
extent of a complete stop. The human operators eventually were able to interpret the interface of
the software and identify the failure mode, even though the screen message was unhelpful as
“Printer not available”. Runners were used to obtain the required drugs for the patient, and others
were sourced from return bins next to the dispensing units.

The capture and correction of the problem did take time, it was due to human problem solving
capabilities and a fortunate set of medical circumstances, that catastrophe was averted. The
medical practitioners that had to work through this stressful situation were very critical of the
(software) system reliability because the patient had nearly been lost. Hospital managers, who
had the responsibility for purchasing the software system and hiring the staff, were full of praise
for the (whole) system because the patient had been saved. The medical staff were considering
the reliability of the system excluding themselves, and with this as the system boundary, many
would agree to its unreliability. The managerial staff were looking at both components of the
system, and with this as the system boundary, many would also agree to its reliability.

The timeliness of the understanding between the human and the computer interface was a critical
factor in the reliability discussion. It appears this was pretty bad, but it could have been designed
far better to actually promote clearer and quicker cognition of the situation. This would have
promoted the ‘AND’ gate situation rather than the ‘OR’ gate position.

7.2 Automotive Case Study

A similar reliability and system boundary debate can be demonstrated through the reliable
provision of driving functions in cars. Many drivers may see their cars as essentially unreliable
machines. Failures arise from the mechanical components, the management software and of
course the human operator. However, failure capture mechanisms are present throughout modern
autos and the human computer interface is at the core. The operator relies on the engine
management system to continually monitor the performance of the car. In turn the engine
management system relies on the human operator (driver) to notice the cautions and warnings and
take the car to the dealer or garage.

From the point of view of the automotive manufacturer, preventing propagation of sub-system
failures to whole system failure enhances the reliability of the car in its driving mode. The
requirement for both the human and the software to notice a developing reliability problem is
promoted further by the design of the interface between the car and the driver. Specific symbols
are well recognised on the dashboard, and even a key is given in the driver’s manual for particular
combinations. My own car’s engine management system actually keeps a permanent memory of
engine faults to be downloaded at the service garage, such that diagnostic time and interpretation
is kept to a minimum.

Of course the economics of the whole system – automotive or otherwise, need careful review as
the boundary widens. To take in more reliability enhancing capability obviously costs more
money. If the system includes just the single car then the cost should be fairly low, but add in a
fully manned service centre and customer care system as well, and the expense increases. The
service centre costs may be considered as overhead and therefore shared among all the cars
produced by the manufacturer.

The more cynical readers might be tempted to have the opinion that automotive producing
companies make more profit on the servicing and maintenance functions than on the car sale in
the first place, so their economics of reliability have a much different approach.

Taking the boundary of the system even further – to include the road and other road users, brings
in the accident as a cause of ‘unreliability’. This may not be fair as neither the driver nor the
automotive manufacturer can have responsibility for the condition of the road or the ability of
other drivers. However, the manufacturer can and does influence the performance of the driver –
the recent addition of satellite navigation systems has led to discussion on driver distraction as a
growing cause of road traffic accidents.

8. CONCLUSIONS

The design of the human-software failure capture mechanisms in both the cited examples
indicates the way that the ‘OR’ gate and ‘AND’ gate positions influence the actual and perceived
reliability of the system in question. Both cases also demonstrate the importance of
understanding the boundary of the system and whether you, as the judge of reliability, are inside
or outside of it.

The logical representations of the ‘OR’ and ‘AND’ relationship between the human and software
components in the error catching operation mode, may be seen to be the limits of performance.
Any system of interest will probably be somewhere in between. The closer the system
approaches the ‘AND’ situation, the system boundary tends to increase, therefore the cost also
appears to have an increasing trend.

Strategies to push the system performance towards the ‘AND’ condition can be promoted with
due respect to operational tempo, these include;

 Deliberate cross checking between software and human functions, e.g. data format checks,
controlled data entry procedures and re-presentation of data for human review.

 Functional separation of lower level tasks, with functional overlap of higher level tasks.

 Collaboration between humans and software functions for the highest reliability operations.

REFERENCES

Brain & Maguire 2005: “The Opportunity Cost of Military Equipment”, C.J. Brain MIMechE,
R.L. Maguire MIMechE, SE Validation Limited, Salisbury, UK.

MoD 2004: “Human Factors for Designers of Systems – Part 15 Principles and Process”, Defence
Procurement Agency, The Ministry of Defence, Kentigern House, Glasgow, UK.

Høyland & Rausland 1994: “System Reliability Modelling – Models and Statistical Methods”, A.
Høyland, M. Rausland, The Norwegian Institute of Technology, J. Wiley & Sons, New York,
USA.

HSC 1998: “The Use of Computers in Safety-Critical Applications – Final Report of the Study
Group on the Safety of Operational Computer Systems” Health and Safety Commission, HMSO,
Norwich, UK.

Wears 2005: “Automation, Interaction, Complexity and Failure – A Case Study”, R.L. Wears
MD, MS. Department of Emergency Medicine, University of Florida, Jacksonville, USA.

Wright et al 1999: “Functional Allocation : A Perspective from Studies of Work Practice”, P.
Wright, A. Dearden, R. Fields. Department of Computer Science, University of York, York, UK.

